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Structure of the thesis. The thesis is written in Russian and consists of introduction, 
five chapters, conclusions, and one appendix. There are five figures scattered in the text. 
The total volume is 155 pages, the bibliography is comprised of 105 references. 

Chapter 1 is a survey of important results on stabilization of controllable systems 
governed by nonlinear ordinary differential equations, stability theory with respect to a 
part of the variables, and stabilization of a rigid body by means of jet torques. A brief 
analysis of certain publications on mathematical modeling of flexible objects by means of 
rigid bodies systems having elastic hinges is carried out as well. Some open problems are 
stated therein. 

The methodology used is set out in Chapter 2. In section 2.1, the problem of global 
controllability of nonlinear system is treated by the method of oriented manifolds proposed 
by A.M. Kovalev1. The basic concepts of A.F. Filippov’s theory of discontinuous 
differential equations2 are considered in section 2.2. The next section is focused on 
application of the reduction principle for critical cases of stability. Stability criteria by 
G.V. Kamenkov and A.M. Molchanov are used there. The notions of partial stability and 
partial boundedness of solutions are stated in section 2.4. In this section, some results on 
partial asymptotic stability3 obtained by the direct Lyapunov method are formulated. 

In Chapter 3, we consider the following nonlinear control system: 

),( uxfx =& ,      (1) 

where  x∈D⊆Rn is the state,  u∈U⊆Rm is the control. It is assumed that f ∈C 1 (D × U), 
0∈int D, 0∈U,  f (0,0) = 0. Let us denote an ε -neighborhood of x∈D as B (x,ε ). 

Necessary and sufficient conditions for local reachability and local controllability 
of (1) are given in section 3.1. These conditions extend the approach by A.M. Kovalev1 for 
the local case. 

By means of the above results, the following theorem has been proved in section 3.2. 
 
Theorem 1. Let U be a compact, and let for some ε >0 the system (1) be locally 

reachable at any point of B (0,ε )\{0}. Then there exists a (generally discontinuous) 
feedback control  u: B (0,ε )→U, u(0) = 0  ensuring Lyapunov stability of the closed-loop 
system: 

))(,( xuxfx =& .      (2) 

Here the solutions of (2) are defined in the sense of Filippov. 
Since the notion of reachability is weaker than controllability, Theorem 1 holds for 

the case when (1) is locally controllable at each point of B (0,ε )\{0}. Let us remark that 
the stability property in this theorem may not be asymptotic. 
                                                           
1 Kovalev A.M. (1995): Controllability criteria and sufficient conditions for dynamical systems to be 
stabilizable. Journal of Applied Mathematics and Mechanics, Vol.59, No.3, 379-386. 
2 Filippov A.F. (1988): Differential equations with discontinuous righthand sides. Kluwer, Dordrecht. 
3 Rumyantsev V.V., Oziraner A.S. (1987): Stability and stabilization of motion with respect to a part of 
the variables. Nauka, Moscow. 
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It should be emphasized that the above theorem has some relation with the result by 
F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag, A.I. Subbotin1. The authors of that paper have 
proved that for any asymptotically null-controllable system there exists a discontinuous 
stabilizing feedback law. However, their way of defining the feedback solutions 
(“π trajectories”) is not equivalent to Filippov’s approach. 

In order to show the necessity of applying discontinuous feedback controls, the 
following example has been considered in the thesis: 
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where  x∈D = (-e-1, e-1), u∈U = [-2, 2],  f ∈C ∞ (D × U). It has been shown that the 
system (3) is locally controllable at any point of D, however, there is no continuous 
feedback control ensuring Lyapunov stability of the equilibrium  x=0. 

On the other hand, Ryan’s result2 implies that, under the conditions of Theorem 1, 
one cannot guarantee the existence of a feedback law u(x) giving uniform asymptotic 
stability of the equilibrium point. It means that the assertion of Theorem 1 cannot be 
strengthen in the general case. 

The set of discontinuity points of a stabilizing feedback control is investigated in 
section 3.3. The main result of such investigation can be formulated as follows. 

Theorem 2. Suppose that U is a convex compact, and that for some ε >0 the 
system (1) is locally reachable at any point of B (0,ε )\{0}. Let us assume furthermore that 
f (x, u)  is affine with respect to  u  and analytic on  x. Then there exists a feedback law 
u∈С ( B (0,ε )\M ), u(0) = 0 ensuring Lyapunov stability of the equilibrium x=0, where the 
dimension of M is at most  n-1. 

Section 3.4 is devoted to the problem of optimal stabilization of the system (1) with 
analytic right-hand side in the critical case when stability is assured by a finite order 
approximation. Let us assume that for any analytic feedback control u(x) of some class U0 
the corresponding closed-loop system (2) exhibits a critical case of  q  pairs of purely 
imaginary roots. By applying the reduction principle3, stability analysis of (2) leads us to 
the following so-called “shortened” normalized system: 

),;,...,,( 21 urrrFr qss =&    s = 1,2,...,q,     (4) 

where Fs are homogeneous functions of degree N ≥ 3 with respect to  r1, r2,..., rq. The 
number N characterizes the minimal order of nonlinear terms appearing in the normal form 

                                                           
1 Clarke F.H., Ledyaev Yu.S., Sontag E.D., Subbotin A.I. (1997): Asymptotic controllability implies 
feedback stabilization. IEEE Trans. on Autom. Control, Vol.42, 1394-1407. 
2 Ryan E.P. (1994): On Brockett's condition for smooth stabilizability and its necessity in a context of 
nonsmooth feedback. SIAM J. Control Optim., Vol.32, No.6, 1597-1604. 
3 Veretennikov V.G. (1984): Stability and oscillations of nonlinear systems. Nauka, Moscow (in Russian, 
Zentralblatt MATH Review Zbl. 0532.34002). 
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of the shortened system. The right-hand side of (4) depends on parameters, i.e. the Taylor 
coefficients of a feedback law  u∈U0   at  x=0. 

Krasovskii’s – Zubov’s theorem1 implies that the necessary and sufficient condition 
for asymptotic stability of (4) is that the functional 

( ))(lim)]([ )1/(1 trttr N
t

−
+∞→

+ =φ      (5) 

should be bounded on the set of solution of (4), where |r(t)| denotes the Euclidean norm of 
r(t). Let us denote by r (t; r0, u) the solution of (4) corresponding the feedback control  
u∈U0  and the initial condition  r (0; r0, u) = r0. 

Definition 1. The feedback control u*∈U0 solves the problem of optimal stabilization 
(with respect to asymptotic decreasing of the norm) if, the corresponding system (4) is 
asymptotically stable for u*(x), and for any u∈U0, the following inequality holds: 

{ } { })],;([sup)],;([sup 0
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≤ φφ .    (6) 

The optimality condition (6) means that the control u*(x) “uniformly” damps the 
solutions of (4) in the fastest way as t → +∞. K. Peiffer and A.Ya. Savchenko2 have 
considered a similar problem statement within the framework of passive stabilization of a 
system with one critical degree of freedom. However, in the above-mentioned paper, the 
notion of optimality has not been rigorously defined through specifying a value functional 
on the trajectories. 

In subsection 3.4.2, the upper and lower estimates of (5) were obtained for the critical 
case of  q  pairs of purely imaginary roots under the condition of Molchanov’s stability 
criterion3, N =3. The proof of these estimates uses an explicit construction of a 
homogeneous Lyapunov function. A particular case of two pairs of imaginary roots (q=2, 
N ≥3) is considered in subsections 3.4.3, 3.4.4. For this case, by substituting ρs = rs

2 ≥ 0  
into (4), one gets the following system of equations: 
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The main result of section 3.4 is given by Theorem 3. 
Theorem 3. Suppose that the trivial solution of (7) is asymptotically stable in the 

cone ρ1  ≥ 0, ρ2  ≥ 0.  Then for any solution  r(t)  of  (4) there exists a finite limit: 

( ))(lim)]([ )1/(1 trttr N
t

−
+∞→

+ =φ .    (8) 

                                                           
1 Krasovskii N.N. (1959): Some problems of stability theory of motion. Fizmatgiz, Moscow, p. 114-115. 
(in Russian). 
Zubov V.I. (1964): Methods of A.M. Lyapunov and their application. P. Noordhoff Ltd., Groningen. 
2 Peiffer K., Savchenko A.Ya. (2000): On the asymptotic behavior of a passively stabilized system with 
one critical variable. Rend. Acc. Sc. fis. mat. Napoli, Vol.67, 157-168. 
3 Molchanov A.M. (1961): On the stability in the case of neutral linear approximation. Doklady AN 
SSSR, Vol.141(1), 24-27 (in Russian), and Sov. Math. Dokl., Vol.2, 1378-1381 (English translation). 
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Moreover, 

21
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where the supremum in the right-hand side of (9) is taken among all the solutions 0~
1 ≥ρ , 

0~
2 ≥ρ  of the algebraic system: 
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For particular case N =3, the limit (8) is expressed as a function of the initial 
conditions and coefficients of (7) in subsection 3.4.3. 

Theorem 3 reduces the problem of optimal stabilization to the construction of an 
admissible feedback control u*∈U0, that minimizes the value (9) defined by solutions of 
the algebraic system (10). A model example illustrating the above reduction is given in 
subsection 3.4.4. 

Chapter 4 is devoted to the problem of stabilization with respect to a part of the 
variables. In section 4.1, the following non-autonomous system is considered: 

),,,( uzytYy =& ,   ),,,( uzytZz =& ,    (11) 

(t ≥ 0, 1nRy∈ , 2nRz∈ , u∈U⊆Rm, 0∈U, Y (t, 0, z, 0) ≡ 0, Z(t, 0, 0, 0) ≡ 0) 

where ),...,,,...,(
21 11 nn zzyyx = ∈Rn  is the state (n=n1+n2), u is the control. The right-hand 

side of (11) is supposed to be continuous on  D × U, 

},||,0:),,({ 2nRzHytzytD ∈≤≥= ,  (H=const>0). 

We assume z-extendability1 of the solutions, that is, for any measurable function 
u(t): [0,+∞)→U, each solution x(t) = (y(t), z(t)) of (11) is defined for all t ≥ 0 satisfying the 
inequality |y(t)| ≤ H. 

Let V(t,x) be a function of class C1 (D). We denote its time-derivative by virtue of 
(11) as ),,( uxtV& : 
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In order to state precisely our results let us introduce two definitions. 
Definition 2. A function  V(t,x)∈C1 (D) is said to be control Lyapunov function with 

respect to  y  if it satisfies the following conditions: 

c1(|y|) ≤ V(t,x) ≤  c2(|y|),  c1,c2 ∈K, 

∀(t,x)∈D  ⇒ |)(|),,(inf yuxtV
Uu

α−≤
∈

& ,   α ∈K,   (12) 

                                                           
1 Vorotnikov V.I. (1998): Partial stability and control. Birkhäuser, Boston. 
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where K is the Hahn functions class (i.e. K consists of all continuous, strictly increasing 
functions a: [0,+∞)→[0,+∞), a(0)=0). 

Definition 3. A control Lyapunov function V(t,x)∈C1 (D) with respect to y satisfies 
the small control property if, for each ε > 0, t0 ≥ 0, x0 ∈{x: y=0}, there exists a 
neighborhood B(t0,x0) of (t0,x0), such that 

∀(t,x)∈ B(t0,x0)∩D  ⇒  |)(|),,(inf
||

yuxtV

Uu
u

α
ε

−≤

∈
<

& ,   α ∈K.   (13) 

The main result of section 4.1 is as follows. 
Theorem 4. Suppose that  U  is a compact set, and that  V(t,x)  is a control Lyapunov 

function with respect to  y  for the system (11). Then there exists a (discontinuous) 
feedback law u: D→U, u(t, 0, z)=0  ensuring uniform asymptotic stability of the set 
M ={x: y=0}, provided that the solutions are defined in the sense of Filippov. Moreover, if 
D =[0,+∞) × Rn, and V(t,x)→∞  as |y|→∞  uniformly on 2),0[),( nRzt ×+∞∈ , then the 
above feedback ensures global uniform asymptotic stability of  M. 

Hereinafter, we consider a class of affine control systems: 

∑
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0 ),(),(& .     (14) 

Theorem 5. Let  V(t,x)  be a control Lyapunov function with respect to  y  for (14), 
and let the above function satisfy the small control property, U=Rm. Then there exists a 
feedback control u(⋅)∈C(D), u(t, 0, z)=0, that ensures uniform asymptotic stability of 
M ={x: y=0}. Such a feedback is given by the following expression: 
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where α ∈K is an arbitrary Hahn function satisfying the inequalities (12), (13), 
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If, moreover, D =[0,+∞) × Rn and V(t,x)→∞ as |y|→∞ uniformly on 2),0[),( nRzt ×+∞∈ , 
then (15) ensures global uniform asymptotic stability of M. 



 7

The result obtained extends Artstein’s theorem1 and Sontag’s universal formula2 for 
the case of stabilization with respect to a part of the variables. 

In section 4.2, the problem of partial stabilization if considered for autonomous affine 
control systems. By applying the Barbashin – Krasovskii – LaSalle invariance principle, a 
pair of sufficient stabilizability conditions has been established. 

Theorem 6. Suppose that the system (14) is autonomous (i.e. fi(t,x), mi ,0=  don’t 
depend on t). Let U=Rm, and let there be a function V(x) ∈C1(Rn) satisfying the following 
conditions: 
1. c1(|y|) ≤ V( x) ≤  c2(|y|),  c1,c2 ∈K; 
2. For each  x  of the closed domain 

},||:{ 2n
H RzHyxD ∈≤= ,  (H=const>0) 

 the time-derivative ),( uxV&   by virtue of (14) has non-positive infimum: 
0),(inf ≤

∈
uxV

Uu
& ; 

3. The system )(0 xfx =& doesn’t have any semitrajectory on M0 defined for all t ≥0, 
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4. For arbitrary  x0: b(x0)=0, ε >0, there exists  δ (x0,ε )>0: 

0),(inf||
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uxVxx
u
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ε

δ ; 

5. There exists ∆0 >0 such that any solution x(t) = (y(t), z(t)) of the closed-loop 
system (14) with 

2

42

||

||
)(
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baa
bxu ii

++
−=   if  b(x) ≠ 0;    ui (x)=0  if  b(x) = 0,     mi ,1= ,  (17) 

is bounded for all t ≥0, provided that | y(0)| < ∆0   (functions a(x),b(x) are given by (16)). 
Then the feedback (17) is continuous on  DH, and the invariant set M={x: y=0}  of the 

closed-loop system (14), (17) is asymptotically stable. 

Theorem 7. Suppose that (14) is autonomous, and that U=Rm. Let V(x) ∈C1(Rn) be a 
function satisfying the following conditions: 
1. c1(|y|) ≤ V( x) ≤  c2(|y|),  c1,c2 ∈K; 
2. The equation 

∑
=

=+
m

i
ii xbxuxa

1

0 0)()()(  

admits a continuous solution  u0(x) defined in DH , such that the set 

                                                           
1 Artstein Z.  (1983): Stabilization with relaxed controls. Nonlinear Analysis, TMA, Vol.7, 1163-1173. 
2 Sontag E.D. (1989): A universal construction of Artstein's theorem on nonlinear stabilization. Systems 
and Control Letters, Vol.13, 117-123. 
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M1={x∈DH :  b(x)=0,  y≠0} 
doesn’t have any positive semitrajectory of (14) with  u= u0(x); 
3. There exists a function  h∈C(DH), h(x) >0, such that each solution of the closed-
loop system (14) with 

ui(x) = )(0 xui – h(x) bi(x),  mi ,1= ,         (18) 

is bounded with respect to  z, provided that the initial values are small enough. 
Then the feedback law (18) ensures asymptotic y-stability of the solution x=0  of (14). 
The above results are applied in section 4.3 for deriving a feedback controller that 

solves the problem of attitude stabilization of a rigid body actuated by a pair of control 
torques. 

In subsection 4.3.1, a problem on partial stabilization of a rigid satellite moving 
around its centroid by means of jet control torques is considered. The equations of motion 
are written in the form of Euler-Poisson: 

132
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1 u
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= ωωω& ;  231
2
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2 u
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= ωωω& ;  21
3

21
3 ωωω

A
AA −

=& ;      (19) 

32231 νωνων −=&  (123),    (20) 

where ωi and νi denote the components of the angular velocity and the fixed attitude 
vector, respectively; Ai are the principal moments of inertia; u1, u2 denote the control 
torques actuated by jet engines. The system (19), (20) with u1=u2=0 admits the following 
solution: 

ω1=ω2=ω3=0, ν1=ν2=0, ν3=1.     (21) 
The solution (21) describes an equilibrium state when the third principal axis of inertia is 
collinear to the attitude vector ν. It should be emphasized, that the solution (21) cannot be 
asymptotically stabilized due to existence of an integral of (19), (20). In subsection 3.4.1, 
we consider the stabilization problem of the equilibrium (21) with respect to the following 
variables: 

( ω1, ω2, ν1, ν2 ).      (22) 
The above variables correspond to the problem of single-axis stabilization of a body, at 
that the limit motions are rotations around the vector ν. By applying the results of 
section 4.2, we derive a feedback controller solving the partial stabilization problem: 

113
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where ε  is an arbitrary positive constant. 
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Thus, the feedback law (23) ensures asymptotic stability of the solution (21) of 
(19), (20) with respect to the variables (22). In addition, the equilibrium of the closed loop 
system (19), (20), (23) is proved to be stable in the sense of Lyapunov. 

In subsection 4.3.2, we consider the case when the controls are implemented by a pair 
of rotating flywheels attached to a rigid body. The dynamical equations take the following 
form: 

13223232111 )()( uIAAIA −Ω+−=− ωωωω& ; 

23113113222 )()( uIAAIA −Ω−−=− ωωωω& ; 

122211212133 )( ωωωωω Ω−Ω+−= IIAAA & ; 

1111 )( uI =+Ω ω&& ;     2222 )( uI =+Ω ω&& ,                                                        (24) 

where ωi denote the angular velocity components of the body; Ω1, Ω2 – relative angular 
velocities of the flywheels; I1, I2 – inertia moments of the flywheels (A1 > I1, A2 > I2); u1, u2 
denote the control torques applied to the flywheels. The system (24), (20) with u1=u2=0 
admits a stationary motion: 

ω1=ω2=ω3=0, Ω1=const, Ω2=const, ν1=ν2=0, ν3=1.   (25) 
In subsection 4.3.2, we construct a feedback control for (24), (20), that stabilizes (25) with 
respect to the variables (22): 

132222321 )( εωωωνν +Ω++= IAu ;  231111312 )( εωωωνν +Ω+−−= IAu ,    (26) 

where ε >0 is an arbitrary constant. 
The efficiency of the controllers proposed (23), (26) is illustrated by means of 

numerical simulation carried out in the thesis. 
Chapter 5 is focused on mathematical modeling of a wind engine as a system of 

coupled rigid bodies. The model considered has five degrees of freedom and consists of 
three bodies: a pair of wind blades and a shaft having the fixed point (fig. 1). Each blade is 
attached by means of an elastic cylindrical joint, and its line of rotation is perpendicular to 
the longitudinal axis of the shaft. The above joints simulate resilience of the blades. The 
resilience of the shaft is taken into account by means of an elastic ball and socket joint 
placed at the fixed point. In section 5.1, we derive the motion equations for the model 
considered: 

iii

TT
dt
d

ϕϕϕ ∂
Π∂

−=
∂
∂

−
∂
∂
&

,  i=1, 2; 

MLL =×+ω& ;  0=×+ γωγ& ,     (27) 
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where ϕ1, ϕ2 denote the deviation angles of 
the first and the second blade, 
respectively; Т is the kinetic energy; Π is 
the potential of the axial pressure and 
elasticity forces at the cylindrical joints; L 
is the angular momentum about the fixed 
point; ω = (ω1, ω2, ω3) is the angular 
velocity of the shaft; M is the moment of 
force about the fixed point; the vector 
γ = (γ1, γ2, γ3) is fixed and collinear to the 
air flow. In the scalar form, the system 
(27) consists of eight nonlinear ordinary 
differential equations with regard to  
ϕ1, ϕ2, ω1, ω2, ω3, γ1, γ2, γ3. 

In section 5.2, we construct the 
system of linear approximation for (27) in 
a neighborhood of the following stationary 
motion: 

 

ϕ1 = ϕ2 = ϕ0 = const,  ω1 = ω2 = 0,  ω3 = ω0 = const ≠0, γ1=γ2=0, γ3=1.           (28) 
The solution (28) corresponds to on-speed conditions of the wind engine. The 

characteristic polynomial of the linearized system is factorized as the product of 
polynomials of the first, third, and sixth degrees. 

In section 5.3, we investigate stability conditions of the solution (28). Domains of 
stability in the set of basic mechanical parameters are constructed numerically. 

An individual case without damping is considered in subsection 5.3.1. In that case, 
the necessary stability conditions are analyzed for sufficiently small values of the 
parameters ϕ0 and σ /κ,  where κ >0, σ >0 denote the stiffness coefficients of the 
cylindrical and ball and socket joints, respectively. We show that the stability condition is 
reduced to the following inequality: 

)2(

22
2

1

2
1

2
0

mlJJA

mlJJA

zzxx

zzxx
+−

−+−
>

κ
ω

, 

where A1 is the inertia moment of a blade with respect to the axis of cylindrical joint; Jxx, 
Jzz are the inertia moments of the shaft; m is the mass of a blade; l is the length of the shaft. 

The Lienard-Chipart sufficient conditions of stability are investigated in 
subsection 5.3.2 for the case with damping. Two extreme cases corresponding to large 
values of the stiffness coefficients are considered. 

Case 1: the stiffness coefficient κ >0 is bounded, while 1/σ is a small parameter. We 
have proved asymptotic stability of the solution (28) in that case. 

Case 2: the coefficient σ  is bounded, while 1/κ  is a small parameter. In the presence 
of an additional constraint, we get the following condition for asymptotic stability of (28): 

Fig. 1. 
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q = A1 + A2 + Jzz – Jxx – 2ml2,   δ * = (σ + 2Pl)/(Pr), 

where P is the force of frontal pressure; τ1, τ  are positive damping coefficients; A2 is the 
inertia moment of a blade; ν  is the ratio of the turning moment and the moment of frontal 
pressure; r is the distance between the line of rotation of the shaft and the aerodynamic 
center of a blade. 

In Appendix A, we give the coefficients of the characteristic polynomial for the 
problem considered in Chapter 5. 

 

Conclusions 

A question of sufficient stabilizability conditions is investigated for nonlinear control system 
governed by ordinary differential equations. For the problem of partial stabilization, we have proposed a 
controller design scheme based on the concept of control Lyapunov functions. In addition, problems of 
stability and stabilization have been solved for some systems of coupled rigid bodies. The main results of 
thesis are as follows: 

1. It has been proved that, for any locally controllable system, there exists a (discontinuous) 
feedback law ensuring Lyapunov stability of the equilibrium. At that, the closed-loop solutions are 
defined in the sense of Filippov. For affine control systems, it has been shown that the set of 
discontinuities of the above feedback is contained in a proper submanifold of the state space. 

2. For the critical case of two pairs of purely imaginary roots, asymptotic estimates of the solutions 
have been obtained. The above estimates are shown to be applicable for solving the problem of optimal 
stabilization. 

3. Sufficient conditions for non-autonomous systems to be stabilizable have been derived by means 
of the control Lyapunov functions with respect to a part of the variables. For affine systems, a 
constructive approach for feedback design has been developed. This result extends Artstein’s theorem for 
the case of partial stabilization. 

4. Sufficient conditions for partial stabilizability of nonlinear autonomous systems have been 
obtained, provided that there exists a Lyapunov function having non-positive lower bound of time-
derivatives. The problem of partial stabilization of a rigid body subjected to a pair of control torques has 
been solved by means of the above technique. Two cases have been considered. In the first case the 
control is implemented by jet engines, while in the second one the satellite is controlled by means of 
moving masses (flywheels). 

5. A mathematical model of a wind engine unit has been proposed in the form of a system of 
coupled rigid bodies. Stability conditions of a stationary motion have been obtained by means of the 
linearization procedure. For the case of small blade deviation and large stiffness coefficients of the shaft, 
we have got a stability condition that establishes a relation of the angular velocity with the stiffness and 
inertial parameters. Under an additional constraint, we have obtained a sufficient stability condition 
imposing a restriction on admissible forces of frontal pressure. It has been established that uniform 
rotation of the model is stable when the stiffness coefficient of the shaft is large enough. 


