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The problem of partial stabilization for nonlinear control systems described
by the Ito stochastic differential equations is considered. For these systems,
we propose a constructive control design method which leads to establishing
the asymptotic stability in probability of the trivial solution of the closed-
loop system with respect to a part of state variables. Mechanical examples
are presented to illustrate the efficiency of the obtained controllers.

В работе рассматривается задача стабилизации относительно части пе-
ременных для нелинейных управляемых систем, которые описываются
стохастическими дифференциальными уравнениями Ито. Предложен
конструктивный метод построения функций обратной связи, обеспечи-
вающих частичную асимптотичесую устойчивость по вероятности три-
виального решения соответствующей замкнутой системы. Эффектив-
ность полученных управлений проиллюстрирована на механических
примерах.

1 Introduction

To construct adequate mathematical models that describe the behav-
ior of real dynamic processes and analyze their stability properties, it is
necessary to take into account the effects of uncertainties and random
disturbances. The latter leads to the need to study systems of differen-
tial equations with random perturbations. Here, qualitative methods for
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investigating the asymptotic behavior of solutions of systems of differen-
tial equations with random disturbances are useful. Lyapunov methods
for analyzing the stability of stochastic systems have been developed by
many authors (see, e.g., [1, 2] and references therein). In particular, the
concept of control Lyapunov functions and Artstein’s theorem [3] have
been extended to stochastic differential equations in [4]. In [5], a crite-
rion for stochastic finite-time stability via multiple Lyapunov functions
has been obtained.

Partial stabilization problem arises in tasks when only the stability
with respect to some variables is needed for a desired performance of
the system. This task is also crucial when the system is not stable in
the sense of Lyapunov, but asymptotically stable with respect to a part
of variables [6–9]. Therefore, the problems of partial stability and sta-
bilization of motion are highly important in engineering applications,
cf. [10, 11]. In the paper [9], conditions of partial stability in probability
for the Ito stochastic differential equations have been obtained by Lya-
punov’s direct method. In [12], sufficient conditions for partial stability
of stochastic reaction-diffusion systems with Markovian switching have
been derived.

In this paper, we consider the problem of stabilization of the Ito-
type stochastic differential equations with respect to a part of variables.
Our goal is to propose an efficient control design scheme for the above
problem. To achieve this goal, we present an extension of the universal
stabilizing controllers from [13] to the problem of partial stabilization of
stochastic systems in Section 3. Our main theoretical contribution will
be applied to mechanical examples in Sections 4 and 5.

2 Notations and Definitions

Throughout this paper, let 𝑤(𝑡) ∈ ℝ𝑘 (𝑡 ≥ 0) be a standard 𝑘-dimensional
Wiener process defined on a complete probability space (Ω,ℱ , 𝑃 ), and
let {ℱ𝑡}𝑡≥0 be the complete right-continuous filtration generated by 𝑤.

Consider a control system described by the Ito stochastic differential
equations:

𝑑𝑥(𝑡) = (𝑓(𝑥) + 𝑔(𝑥)𝑢)𝑑𝑡+

𝑘∑︁
𝑖=1

𝜎𝑖(𝑥)𝑑𝑤𝑖(𝑡), (1)

where 𝑥 = (𝑥1, ..., 𝑥𝑛)
𝑇 ∈ 𝐷 ⊆ ℝ𝑛 is the state and 𝑢 = (𝑢1, ..., 𝑢𝑘)

𝑇 ∈
𝑈 = ℝ𝑘 is the control. We assume that 0 ∈ 𝐷, 𝜎𝑖(0) = 0 for 𝑖 = 1, ..., 𝑘,
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and the maps 𝑓 : 𝐷 → ℝ𝑛, 𝑔 : 𝐷 → ℝ𝑛×𝑘, 𝜎𝑖 : 𝐷 → ℝ𝑛 satisfy the
Lipschitz condition on every bounded domain 𝑋 ⊂ 𝐷.

For a map 𝑕 : 𝐷 → 𝑈 , 𝑕(0) = 0, we introduce the closed-loop system
for (1) with the feedback law 𝑢 = 𝑕(𝑥):

𝑑𝑥(𝑡) = (𝑓(𝑥) + 𝑔(𝑥)𝑕(𝑥))𝑑𝑡+

𝑘∑︁
𝑖=1

𝜎𝑖(𝑥)𝑑𝑤𝑖(𝑡). (2)

If 𝑕 is Lipschitz continuous on every bounded 𝑋 ⊂ 𝐷, then there exists a
unique strictly Markov process 𝑥𝜉,𝑠(𝑡) which is a solution of (2) under the
initial condition 𝑥𝜉,𝑠(𝑠) = 𝜉 (see, e.g., [15]). We relate with the control
system (1) the operator

ℒ𝑢 =

𝑛∑︁
𝑖=1

(𝑓(𝑥) + 𝑔(𝑥)𝑢)𝑖
𝜕

𝜕𝑥𝑖
+

1

2

𝑛∑︁
𝑖,𝑗=1

𝑐𝑖𝑗(𝑥)
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
,

[𝑐𝑖𝑗(𝑥)] = 𝜎(𝑥)𝜎𝑇 (𝑥).

In the sequel, we will study stability of the trivial solution of (2)
with respect to the variables 𝑥1, 𝑥2, ..., 𝑥𝑚. Denote these variables as 𝑦 =
(𝑦1, ..., 𝑦𝑚)𝑇 ∈ ℝ𝑚 and the rest as 𝑧 = (𝑧1, ..., 𝑧𝑝)

𝑇 ∈ ℝ𝑝, 𝑚 + 𝑝 = 𝑛,
then 𝑥 = (𝑦𝑇 , 𝑧𝑇 )𝑇 , 𝑥0 = (𝑦𝑇0 , 𝑧

𝑇
0 )

𝑇 , and ||𝑥|| = (𝑥2
1 + ... + 𝑥2

𝑛)
1/2 =

(||𝑦||2 + ||𝑧||2)1/2.
We assume also that the solutions of (1) are 𝑧−extendable in a closed

domain 𝐷 = 𝒟𝐻 , where

𝒟𝐻 = {𝑥 ∈ ℝ𝑛 : ||𝑦(𝑡)|| ≤ 𝐻, 𝑧 ∈ ℝ𝑝}, 𝐻 = 𝑐𝑜𝑛𝑠𝑡 > 0.

It means that if 𝑥(𝑡) ∈ 𝒟𝐻 is a maximal solution of system (1) on 𝑡 ∈
(𝜏1, 𝜏2) with some admissible control 𝑢 ∈ 𝐿∞(𝜏1, 𝜏2), then either ||𝑦(𝑡)|| →
𝐻 as 𝑡 → 𝜏2 almost surely or 𝜏2 = ∞. This kind of 𝑧-extendability
assumption is natural in the problems of partial stability [6]; it is usually
satisfied for well-posed mathematical models in physics whose trajectories
do not blow up in finite time with bounded control.

Let us introduce the standard class of comparison functions 𝒦, whose
elements are continuous strictly increasing functions 𝛼 : ℝ+ → ℝ+ such
that 𝛼(0) = 0. We will extend the concept of a control Lyapunov func-
tion [3, 4, 13, 14] to the problem of partial stabilization of stochastic sys-
tems as follows.
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Definition 2.1. A function 𝑉 ∈ 𝐶2(𝒟𝐻 ;ℝ) is called a 𝑦-stochastic con-
trol Lyapunov function (𝑦-SCLF) for system (1), if there exist 𝛼, 𝛽1, 𝛽2 ∈
𝒦 such that

𝛽1(||𝑦||) ≤ 𝑉 (𝑥) ≤ 𝛽2(||𝑦||),
inf
𝑢∈𝑈

ℒ𝑢𝑉 (𝑥) ≤ −𝛼(||𝑦||),

for all 𝑥 ∈ 𝒟𝐻 .

Throughout the text, 𝐵(𝑥; 𝛿) denotes the 𝛿-neighborhood of a point
𝑥 ∈ ℝ𝑛.

Definition 2.2. A function 𝑉 ∈ 𝐶2(𝒟𝐻 ;ℝ) satisfies the small control
property with respect to 𝑦 if, for any 𝜖 > 0 and any 𝑥0 ∈ 𝑀 = {𝑥|𝑦 = 0},
there exists a 𝛿 > 0 such that

𝑥 ∈ 𝐵(𝑥0; 𝛿) ⇒ inf
||𝑢||<𝜖

ℒ𝑢𝑉 (𝑥) ≤ −𝛼(||𝑦||).

Definition 2.3. [9, 16–18] The solution 𝑥 = 0 of system (2) is called
𝑦-stable in probability if, for all 𝑠 ≥ 0, 𝜀 > 0, 𝛾 > 0, there exists a 𝛿 > 0
such that 𝜉 ∈ 𝐵(0; 𝛿) implies

𝑃{sup
𝑡≥𝑠

||𝑦𝜉,𝑠(𝑡)|| > 𝜀} < 𝛾.

Definition 2.4. [17,18] The solution 𝑥 = 0 of system (2) is called asymp-
totically 𝑦-stable in probability if it is 𝑦-stable in probability and

𝑃{ lim
𝑡→∞

||𝑦𝜉,𝑠(𝑡)|| = 0} = 1

for all 𝜉 ∈ 𝐵(0;Δ) with some constant Δ > 0.

3 Main result

The following result generalizes the constructive proof of Artstein’s the-
orem [13] for the problem of partial stabilization of stochastic systems.

Theorem 3.1. Let 𝑉 ∈ 𝐶2(𝒟𝐻 ;ℝ) be a 𝑦-SCLF satisfying the small
control property. Then there exists a continuous feedback law 𝑕 : 𝒟𝐻 →
ℝ𝑘, 𝑕(0, 𝑧) = 0, such that the trivial solution of the corresponding closed-
loop system (2) with 𝑢 = 𝑕(𝑥) is 𝑦-asymptotically stable in probability.
The feedback law 𝑕(𝑥) is given as follows:

𝑕𝑖(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
0, 𝑏 = 0,

− 𝑏𝑖
‖𝑏‖2 (𝑎+ (𝑎2 + ‖𝑏‖4)

1
2 ), 𝑏 ̸= 0, 2(𝑎2 + ‖𝑏‖4)

1
2 ≥ 𝛼(‖𝑦‖),

− 𝑏𝑖
2‖𝑏‖2 (2𝑎+ 𝛼(‖𝑦‖)), otherwise,

(3)
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where

𝑎(𝑥) =

𝑛∑︁
𝑖=1

𝑓𝑖(𝑥)
𝜕𝑉 (𝑥)

𝜕𝑥𝑖
+

1

2

𝑛∑︁
𝑖,𝑗=1

𝑐𝑖𝑗(𝑥)
𝜕2𝑉 (𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
,

𝑏𝑖(𝑥) =

𝑛∑︁
𝑗=1

𝑔𝑖𝑗(𝑥)
𝜕𝑉 (𝑥)

𝜕𝑥𝑗
, 𝑏(𝑥) = (𝑏1(𝑥), ..., 𝑏𝑘(𝑥)). (4)

Proof. The proof of continuity of 𝑕(𝑥) in (3) goes along the same lines
as the proof of Theorem 4 in [14].

Let us evaluate the operator ℒ𝑢𝑉 for (1) using the feedback law 𝑢 =
𝑕(𝑥):

ℒ𝑕𝑉 =

⎧⎪⎨⎪⎩
𝑎(𝑥), 𝑏 = 0,

−(𝑎2(𝑥) + ‖𝑏(𝑥)‖4) 1
2 , 𝑏 ̸= 0, 2(𝑎2 + ‖𝑏‖4) 1

2 ≥ 𝛼(‖𝑦‖),
− 1

2𝛼(‖𝑦‖), otherwise.

As 𝑉 (𝑥) is a 𝑦-stochastic control Lyapunov function, the following in-
equality holds:

ℒ𝑕𝑉 ≤ −1

2
𝛼(||𝑦||) for all 𝑥 ∈ 𝒟𝐻 .

Using Grönwall’s inequality, we have:

𝐸||𝑦𝜉,𝑠(𝑡)||2 ≤ 𝑘1(𝑡− 𝑠)𝑒
∫︀ 𝑡
𝑠
𝑘2𝐸||𝑦𝜉,𝑠(𝑝)||2𝑑𝑝 ≤ 𝑁1𝑒

𝑁2𝛿
2

,

where 𝐸 is the expectation in the probability measure 𝑃𝜉,𝑠, 𝑦
𝜉,𝑠(𝑡) is the

𝑦-component of the solution 𝑥𝜉,𝑠(𝑡) of (2) with the initial data 𝑥𝜉,𝑠(𝑠) = 𝜉.

Putting 𝛿 = 𝑙𝑛(
𝜖2𝜖

2
1

𝑁1
)

1
2𝑁2 , we get

𝑃{𝑠𝑢𝑝𝑡≥𝑡0 ||𝑦(𝑡)|| > 𝜖1} ≤ 𝐸||𝑦(𝑡)||2

𝜖21
< 𝜖2.

Let 𝜏𝜀 = inf{𝑡 : ‖𝑦𝜉,𝑠(𝑡)‖ > 𝜀}, 𝜏𝜀(𝑡) = min(𝜏𝜀, 𝑡).
From Dynkin’s lemma [15], it follows that

𝐸𝑉 (𝑥𝜉,𝑠(𝜏𝜀(𝑡)))− 𝑉 (𝜉) = 𝐸

∫︁ 𝜏𝜀(𝑡)

𝑠

ℒ𝑕𝑉 (𝑥𝜉,𝑠(𝑢))𝑑𝑢.

Since ℒ𝑕𝑉 (𝑥) ≤ − 1
2𝛼(||𝑦||), we will get

𝐸𝑉 (𝑥𝜉,𝑠(𝜏𝜀(𝑡))) ≤ 𝑉 (𝜉), 𝑡 ≥ 𝑠. (5)
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The above inequality can be rewritten as∫︁
𝜏𝜀<𝑡

𝛼1(‖𝑦𝜉,𝑠(𝜏𝜀)‖)𝑃𝜉,𝑠(𝑑𝜔)+

+

∫︁
𝜏𝜀≥𝑡

𝛼1(‖𝑦𝜉,𝑠(𝑡)‖)𝑃𝜉,𝑠(𝑑𝜔) ≤ 𝑉 (𝜉).

Hence,
𝛼1(𝜀)𝑃𝜉,𝑠{𝜏𝜀 < 𝑡} ≤ 𝑉 (𝜉).

From the last equality, due to the continuity of the function 𝑉 (𝑥) and
the equality 𝑉 (0) = 0, it follows that

lim
𝜉→0

𝑃𝜉,𝑠{𝜏𝜀 < 𝑡} = 0.

So, the equilibrium 𝑥 = 0 of system (2) is 𝑦-stable in probability.
From (5) it follows that the random process 𝑉 (𝑥𝜉,𝑠(𝜏𝜀(𝑡))) is a non-

negative supermartingale, and there exists the limit

lim
𝑡→∞

𝑉 (𝑥𝜉,𝑠(𝜏𝜀(𝑡))) = 𝜂 (6)

with probability 1.
From the set of sample trajectories of the process 𝑥𝜉,𝑠(𝑡) we take the

subset 𝐵 of sample trajectories such that for any 𝑥𝜉,𝑠
𝑖 (𝑡) (𝑖 = 1, ..., 𝑛) the

following equality holds: 𝜏𝜀(𝑡) = 𝑡, 𝑡 ∈ ℝ+. Then it follow from the above
assumptions that

lim
𝜉𝑦→0

𝑃𝜉,𝑠{𝐵} = 1, (7)

where 𝜉𝑇 = (𝜉𝑇𝑦 , 𝜉
𝑇
𝑧 ).

From (6) and (7), we have

lim
𝑡→∞

𝑉 (𝑥𝜉,𝑠(𝜏𝜀(𝑡))) = lim
𝑡→∞

𝑉 (𝑥𝜉,𝑠(𝑡)) = 𝜂. (8)

Note that 𝑉 (𝑥) is a 𝑦-stochastic control Lyapunov function, so for all
trajectories from the set 𝐵, except a set of probability 0, the following
property holds:

lim
𝑡→∞

||𝑦𝜉,𝑠(𝑡)|| = 0.

From the assumption of 𝑧−extendability of solutions and (8), we ob-
tain 𝜂 = 0.

So, lim𝑡→∞ ||𝑦𝜉,𝑠(𝑡)|| = 0. From this property it follows that the zero
solution of the closed-loop system (2) is 𝑦-asymptotically stable in prob-
ability.
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4 Inverted pendulum with a moving mass

To illustrate possible applications of Theorem 3.1, we consider a mechan-
ical system consisting of an inverted pendulum (carrier body) and a point
mass 𝑚 moving in the direction perpendicular to the axis of symmetry
of the carrier body (Fig. 1). It is assumed that the mass 𝑚 is suspended
by a spring with the stiffness coefficient 𝜘.

Figure 1. Inverted pendulum with a moving mass.

We will use the following notations: 𝑀 is the mass of the carrier
body, 𝜙 is the angle between the axis of symmetry of the carrier and the
vertical, 𝑦 is the displacement of the point mass, and ℓ is the distance
between the fixed point and the suspension of the mass 𝑚.

Let us first derive the equations of motion of this mechanical systems
by using the Lagrangian formalism. The kinetic energy of the system is

𝑇 =

(︂
𝐼

2
+

𝑚(ℓ2 + 𝑦2)

2

)︂
𝜙̆2 +

𝑚

2
𝑦̆2 +𝑚ℓ𝜙̆𝑦̆,

where 𝐼 is the moment of inertia of the carrier body with respect to its
fixed point. The potential energy is

𝑈 =
𝑀ℓ𝑔

2
cos𝜙+

𝜘
2
𝑦2 +𝑚𝑔(ℓ cos𝜙− 𝑦 sin𝜙).

Then the Lagrangian of the considered system takes the form

𝐿 = 𝑇 − 𝑈 =

(︂
𝐼

2
+

𝑚(ℓ2 + 𝑦2)

2

)︂
𝜙̆2 +

𝑚

2
𝑦̆2 +𝑚ℓ𝜙̆𝑦̆−
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−𝜘
2
𝑦2 −

(︂
𝑀

2
+𝑚

)︂
ℓ𝑔 cos𝜙+𝑚𝑔𝑦 sin𝜙.

We now apply Lagrange’s equations in the form

𝑑
𝑑𝑡

(︁
𝜕𝐿
𝜕𝜙̆

)︁
− 𝜕𝐿

𝜕𝜙 = 0,

𝑑
𝑑𝑡

(︁
𝜕𝐿
𝜕𝑦̆

)︁
− 𝜕𝐿

𝜕𝑦 = 𝐹𝑢,

where 𝐹𝑢 is the control force applied to the mass 𝑚.
This leads to the following equations of motion:

𝜙 = 1
𝐼+𝑚𝑦2 (−2𝑚𝑦𝜙̆𝑦̆ −𝑚ℓ𝑦𝜙̆2 + 𝜘ℓ𝑦 + 𝑀ℓ𝑔

2 sin𝜙+

+𝑚𝑔𝑦 cos𝜙− ℓ𝐹𝑢),

𝑦 = ℓ
𝐼+𝑚𝑦2 (2𝑚𝑦𝜙̆𝑦̆ +𝑚ℓ𝑦𝜙̆2 − 𝜘ℓ𝑦 − 𝑀ℓ𝑔

2 sin𝜙+

+ℓ𝐹𝑢 −𝑚𝑔𝑦 cos𝜙) + 𝐼
𝐼+𝑚𝑦2 (𝑦𝜙̆

2 − 𝜘𝑦
𝑚 + 𝑔 sin𝜙)+

+ 1
𝐼+𝑚𝑦2 ((

𝐼
𝑚 + 𝑦2)𝐹𝑢 +𝑚𝑦3𝜙̆2 + 𝑦3𝜘 + 𝑦2𝑚𝑔 sin𝜙).

By replacing

𝑣 =
1

𝐼 +𝑚𝑦2
(−2𝑚𝑦𝜙̆𝑦̆ −𝑚ℓ𝑦𝜙̆2 + 𝜘ℓ𝑦 +

𝑀ℓ𝑔

2
sin𝜙+𝑚𝑔𝑦 cos𝜙− ℓ𝐹𝑢),

we obtain the following equations with respect to the new control 𝑣:

𝜙 = 𝑣,

𝑦 = −(ℓ+ 𝐼+𝑚𝑦2

𝑚ℓ )𝑣 + 1
𝐼+𝑚𝑦2 (2𝑦

3𝜘 + 2𝑚+𝑀
2𝑚 ( 𝐼

𝑚+

+𝑦2)𝑔 sin𝜙)− 2𝑦𝑦̆𝜙̆
ℓ + 𝑔𝑦 cos𝜙

ℓ .

Let us rewrite the above equations of motion in the form 𝑥̆ = 𝑓(𝑥) +
𝑔(𝑥)𝑣,

𝑥 =

⎡⎢⎢⎣
𝑥1

𝑥2

𝑥3

𝑥4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝜙
𝑦
𝜙̆
𝑦̆

⎤⎥⎥⎦ , 𝑓(𝑥) =

⎡⎢⎢⎣
𝑥3

𝑥4

0
𝑞(𝑥)

⎤⎥⎥⎦ , 𝑔(𝑥) =

⎡⎢⎢⎣
0
0
1

−ℓ− 𝐼+𝑚𝑦2

𝑚ℓ

⎤⎥⎥⎦ , (9)

𝑞(𝑥) =
1

𝐼 +𝑚𝑥2
2

(︂
2𝑥3

2𝜘 +
2𝑚+𝑀

2𝑚

(︂
𝐼

𝑚
+ 𝑥2

2

)︂
𝑔 sin𝑥1

)︂
−2𝑥2𝑥3𝑥4

ℓ
+
𝑔𝑥2 cos𝑥1

ℓ
.

It is easy to see that system (9) admits the equilibrium 𝑥 = 0 with
𝑣 = 0 (upper equilibrium). We will consider the stabilization of the
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upper equilibrium of the carrier body in the sense of partial stabilization
problem with respect to the variables (𝑥1, 𝑥3) by applying control to the
point mass.

To take into account random effects, we substitute the stochastic input
𝑣 = 𝑢+ 𝜆𝑥3𝑤̆(𝑡) formally into system (9), where 𝑤(𝑡) is a standard one-
dimensional Wiener process. As a result, we obtain the following system
of stochastic differential equations:

𝑑𝑥1 = 𝑥3𝑑𝑡,
𝑑𝑥2 = 𝑥4𝑑𝑡,
𝑑𝑥3 = 𝑢𝑑𝑡+ 𝜆𝑥3𝑑𝑤(𝑡),

𝑑𝑥4 =
(︁
(−ℓ− 𝐼+𝑚𝑦2

𝑚ℓ )𝑢+ 𝑞(𝑥)
)︁
𝑑𝑡− (ℓ+ 𝐼+𝑚𝑦2

𝑚ℓ )𝜆𝑥3𝑑𝑤(𝑡),

(10)

where 𝑢 is treated as the control.
Since our goal is to steer the variables 𝜙 and 𝜙̆ (i.e. 𝑥1 and 𝑥3) to

zero, we propose the following quadratic Lyapunov function candidate:

2𝑉 (𝑥) = (𝑘21 + 𝑘22 + 𝑘2)𝑥
2
3 + 2𝑘1𝑥1𝑥3 + (𝑘2 + 1)2𝑥2

1,

where 𝑘1 and 𝑘2 are positive constants.
Let us define the functions 𝑎(𝑥) and 𝑏(𝑥) according to (4):

𝑎(𝑥) =

4∑︁
𝑖=1

𝑓𝑖(𝑥)
𝜕𝑉 (𝑥)

𝜕𝑥𝑖
+

1

2

4∑︁
𝑖,𝑗=1

𝑐𝑖𝑗(𝑥)
𝜕2𝑉 (𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
=

= (𝑘1𝑥3 + (𝑘2 + 1)𝑥1)𝑥3 + (𝑘22 + 𝑘21 + 𝑘2)𝜆
2𝑥2

3,

𝑏(𝑥) = (𝑘22 + 𝑘21 + 𝑘2)𝑥3 + 𝑘1𝑥1.

According to Theorem 3.1, we propose the feedback control law for
system (10) in the form (3) with 𝛼(‖𝑦‖) = 𝛾‖𝑦‖2, ‖𝑦‖2 = 𝑥2

1 + 𝑥2
3, 𝛾 > 0.

So, the equilibrium 𝑥 = 0 of the corresponding closed-loop system (10),
(3) is asymptotically stable in probability with respect to (𝑥1, 𝑥3) by
Theorem 3.1. Simulation results for the closed-loop system (10), (3)
with 𝑘1 = 2, 𝑘2 = 1 are presented in Fig. 2. These simulations have been
performed in Maple by using the 𝐼𝑡𝑜𝑃𝑟𝑜𝑐𝑒𝑠𝑠(·) function.

5 Stabilization of a three-wheeled trolley by a stochas-
tic feedback law

Consider a mathematical model of the three-wheeled trolley whose posi-
tion is determined by three coordinates: (𝑥1, 𝑥2) are coordinates of the
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Figure 2. Components 𝑥1 and 𝑥3 of a sample path of the closed-loop sys-
tem (10), (3).

Figure 3. Three-wheeled trolley.

midpoint between the steering wheels, and 𝑥3 is the angle between the
axis of symmetry of the trolley and the 𝑥1-axis, cf. [19]. A cylindrical
hinge whose axis is perpendicular to the axis of symmetry of the trolley is
mounted above the point (𝑥1, 𝑥2) (Fig. 3). A weightless and inextensible
rod can rotate in this hinge, and a point mass is attached to the other
end of the rod. We denote the angle between the vertical axis and the
rod by 𝛼. The motion of the trolley is described by the rolling without
slipping conditions:

𝑑𝑥1 = (𝑢1 + 𝑢2) cos𝑥3𝑑𝑡,
𝑑𝑥2 = (𝑢1 + 𝑢2) sin𝑥3𝑑𝑡,
𝑑𝑥3 = (𝑢1 − 𝑢2)𝑑𝑡,

(11)
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where the vector 𝑢 = (𝑢1, 𝑢2)
𝑇 ∈ ℝ2 is treated as the control.

Following [19], we also write Lagrange’s equation with respect to the
angle 𝛼:

𝛼̈− (𝑥1 cos𝑥3 + 𝑥2 sin𝑥3 + 𝑥3 sin𝛼)𝑥3 cos𝛼 = − sin𝛼. (12)

Note that the considered model belongs to the class of nonholonomic
systems which, as it is well-known, cannot be stabilized in a neighborhood
of the equilibrium position by a deterministic continuous state feedback
law (see, e.g., [20]). In the sequel, we will study the stabilization problem
with respect to a part of variables in the stochastic sense.

Let us denote the relative angular velocity of the rod by 𝜔 = 𝛼̆ and
perform the following change of variables in (11), (12):

𝑧1 := 𝑥3,
𝑧2 := 𝑥1 cos𝑥3 + 𝑥2 sin𝑥3,
𝑧3 := 𝑥1 sin𝑥3 − 𝑥2 cos𝑥3,
𝑧4 := 𝛼,
𝑧5 := 𝜔,
𝜈1 := 𝑢1 − 𝑢2,
𝜈2 := (𝑢1 + 𝑢2)− (𝑢1 − 𝑢2)𝑧3.

Then the equations of motion take the form:

𝑧1 = 𝜈1,
𝑧2 = 𝜈2,
𝑧3 = 𝜈1𝑧2,
𝑧4 = 𝑧5,
𝑧5 = (𝜈2 + 𝜈1𝑧3 + 𝜈1 sin 𝑧4)𝜈1 cos 𝑧4 − sin 𝑧4.

(13)

We randomize system (13) by designing the control inputs

𝜈1 = 𝑣1,
𝜈2 = 𝑣2 + 𝜆𝑧2𝑤̆(𝑡),

where 𝑤̆(𝑡) is treated formally as the derivative of a standard one-dimensional
Wiener process 𝑤(𝑡). Then we rewrite the stochastic control system as
follows:

𝑑𝑧1 = 𝑣1𝑑𝑡,
𝑑𝑧2 = 𝑣2𝑑𝑡+ 𝜆𝑧2𝑑𝑤(𝑡),
𝑑𝑧3 = 𝑣1𝑧2𝑑𝑡,
𝑑𝑧4 = 𝑧5𝑑𝑡,
𝑑𝑧5 = ((𝑣2 + 𝑣1𝑧3 + 𝑣1 sin 𝑧4)𝑣1 cos 𝑧4 − sin 𝑧4) 𝑑𝑡+

+𝜆𝑧2𝑣1 cos 𝑧4𝑑𝑤(𝑡).

(14)
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We consider the partial stabilization problem for system (14) with
respect to the variables 𝑧1, 𝑧2, 𝑧3.

To design stabilizing controls 𝑣1, 𝑣2, we take a control Lyapunov func-
tion candidate of the following form [21]:

𝑉 (𝑧) = 2𝑧3 −
1

2
(𝑧21 + 𝑧22)(1 + 𝑧23) + 2

(︂
|𝑧21 + 𝑧22 |

2

)︂1+
𝑧23
2

.

Then we define the functions 𝑎(𝑧), 𝑏1(𝑧), 𝑏2(𝑧) according to (4):

𝑎(𝑧) =
1

2

5∑︁
𝑖,𝑗=1

𝑐𝑖𝑗(𝑧)
𝜕2𝑉 (𝑧)

𝜕𝑧𝑖𝜕𝑧𝑗
=

1

2
𝜆2𝑧22

𝜕2𝑉 (𝑧)

𝜕𝑧2
2 ,

𝑏1(𝑧) = −𝑧1(𝑧
2
3 +1)+

4
(︁

|𝑧2
1+𝑧2

2 |
2

)︁1+
𝑧23
2

(1 +
𝑧2
3

2 )𝑧1

|𝑧21 + 𝑧22 |
+ 𝑧2

(︀
2− (𝑧21 + 𝑧22)𝑧3+

+𝑧2

⎛⎝2− (𝑧21 + 𝑧22)𝑧3 + 2

(︂
|𝑧21 + 𝑧22 |

2

)︂1+
𝑧23
2

𝑧3 ln

(︂
|𝑧21 + 𝑧22 |

2

)︂⎞⎠ ,

𝑏2(𝑧) = −𝑧2(𝑧
2
3 + 1) +

4
(︁

|𝑧2
1+𝑧2

2 |
2

)︁1+
𝑧23
2

(1 +
𝑧2
3

2 )𝑧2

|𝑧21 + 𝑧22 |
,

𝑏(𝑧) = (𝑏1(𝑧), 𝑏2(𝑧)).

Thus, the conditions of Theorem 3.1 are satisfied with the above choice
of 𝑎(𝑥), 𝑏(𝑥), and 𝛼(‖𝑦‖) = 𝛾‖𝑦‖2, ‖𝑦‖2 = 𝑧21 +𝑧22 +𝑧23 , 𝛾 > 0. Numerical
simulation results for system (14) with the feedback law (3) are presented
in Figs. 4-5.

6 Conclusion

A constructive proof of Artstein’s theorem has been extended to the prob-
lem of partial stabilization of the Ito stochastic differential equations.
This construction allows effective computing of stabilizing feedback con-
trols if a control Lyapunov function in the sense of Definitions 2.1-2.2
is known. The control design scheme of Theorem 3.1 is shown to be
applicable to nonlinear systems with stochastic effects that describe the
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Figure 4. Components 𝑧1, 𝑧2, 𝑧3 of a sample path of the closed-loop sys-
tem (14), (3).

Figure 5. Components 𝑧4, 𝑧5 of a sample path of the closed-loop system (14),
(3).
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dynamics of an inverted pendulum with a moving masses and a three-
wheeled trolley with an additional degree of freedom. The simulation
results, presented in Figs. 2 and 4-5, illustrate the required behavior of
sampled paths of the corresponding closed-loop systems.
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